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Abstract. Several examples of changes of variables in Feynman-type integrals are con- 
sidered. In particular, path integrals in curvilinear coordinates (of a certain class) are 
rigorously defined. An appendix is devoted to path integrals for vector potentials. 

1. Introduction 

This article deals with changes of variables in path integrals, in particular with nonlinear 
transformations. We offer here a rigorous analysis which is based on the definition 
given in (Tarski 1979), and on subsequent extensions. However, we consider also 
curvilinear coordinates, leading to integrals for which this definition does not apply. 
Modified definitions are then needed. 

The available rigorous results on nonlinear transformations in functional integrals 
are (apparently) still very limited. We note in particular the investigations of Gross 
(1960) and of Ramer (1974) dealing with positive-definite (measure-theoretic) 
Gaussian integrals. 

Heuristic treatments of nonlinear transformations of path integrals, for contrast, 
are frequently encountered in gauge theories and elsewhere (cf e.g. Abers and Lee 
1973). Such studies have also been made in the context of one-particle theory. We 
mention in particular the works of Fanelli (1975, 1976) on canonical transformations, 
and of Arthurs (1969), the latter being devoted to polar coordinates. (Investigations 
dealing with path integrals over curved spaces constitute a related body of material, 
cf. e.g. the recent article (Tarski 1982a), which contains further references.) 

We give, in § 2, some elementary examples of integrals of quadratic functions, and 
of transformations of integrals. In § 3 we consider the problem of expressing path 
integrals in terms of curvilinear coordinates (but on a flat space rather than on a 
manifold). Appendix 1 contains the proofs of two propositions. Appendix 2 is devoted 
to vector potentials. 

The content of the second appendix does not fall directly under the subject specified 
in the title. However, there are various points of contact between problems of vector 
potentials and those of curvilinear coordinates, and this circumstance induced us to 
include this appendix. 

In particular, both situations give rise to questions about ordering of factors in path 
integrals. Such questions have been discussed many times, but heuristically. In the 
analysis that we present, ambiguities of ordering are largely eliminated. 
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1174 K S Narain and J Tarski 

On the whole, the present article contains a collection of simple examples, which 
should clarify the general issues that we consider. We did not attempt to resolve any 
of the deeper problems related to transformations of path integrals. 

It is convenient at this point to summarise the definition of Feynman-type integrals, 
following Tarski (1979). This definition yields an integral over an abstract real Hilbert 
space R. The usual path integral is then obtained by specialising the Hilbert space to  
the space Xo of paths 7 parametrised by time, 7: [0, t ] +  R". This space is delimited 
by the scalar product (4, 4)  and the initial condition ~ ( 0 )  = O .  Note in this connection 
that im(+,  4)  is just the kinetic part of the action. 

If dim X = k < CO, we set up the approximation 

z b 3 " ( f )  = [ ( b - i ~ ) / 2 ~ ] ~ "  dku exp(-tb(u-a, U-")) exp(&(u, u))f(u),  (1.1) I 
where K is a fixed parameter (Im K 2 0, K # 0; in applications K will be the mass of 
the particle), a E 2, and Re b > 0. We then take lim(b+O) of I b 3 " ( f ) ,  requiring that 
the limit must be the same along any non-tangential path, and must be independent 
of cy. This latter condition ensures that in the limit, the integral is translationally 
invariant. With regard to the former condition, we will refer to it as the non-tangential 
limit. 

If dim aP = a, we consider sequences {P,} of increasing finite-dimensional projec- 
tions P,, satisfying lim,+& = 1. Then f(P,t), t E X i s  a function on a finite-dimensional 
space, which we integrate as above (with a replaced by Pa). We denote the result 
by Z$,"(f). We then consider the limit of Iy(f) as j+m for suitable sequences of 
projections; i.e., we specify a family of sequences, and all sequences of this familx 
must yield the same result. In Tarski (1979) we considered in particular the family 9 
of all such sequences, and the subfamilies of form 9 ( P ) ,  defined by restricting the P, 
by P, 2 P, for all projections in all sequences. 

The limit j + CO is to be followed by b + 0, with the same conditions as before. The 
result is the Feynman integral of f :  

I ~ ( t )  exp(tiK(t, t))f(t) = b - 0  lim 1-m lim '4" U). (1.2) 

The familiar polygonal approximation (e.g. Truman 1976) relates to this construc- 
tion as follows. We first subdivide [0, t ] ,  as e.g. 

O = f o < f l < . .  . < t k = f .  (1.3) 
The condition 4 =constant in each subinterval then determines a projection P, and 
one can show that P-. 1 as max(t, - L 0 (Truman 1976, theorem 4). Note that 
for an approximation determined by such a projection, we may exploit 

[77(f , ) -77(f / - l ) l / ( f , - t , - l )  = if t,-l < 7 < t, (1.4) 
to change the variables of integration from the 4's to the ~ ( t ) ) .  We will normally use 
the notation 7, = 77( t,). (We recall also that T~ = 0.) We state for reference the form 
of the approximation for the case a = 0, denoting F ( P 7 )  by Fk( 71,. . . , T ~ ) :  
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The function Fk may contain a factor 6(vk-y) ,  if one wishes to  impose a second 
endpoint condition on the paths. 

A sequence of subdivisions as in (1.3) defines a sequence of projections. We denote 
the family of sequences of this kind by 9,. This family is rather special as compared 
with the others that we mentioned, and lacks some of their properties. E.g. convergence 
with reference to 9, does not guarantee rotational invariance of the integral. Con- 
sequently, convergence with reference to 9, was not considered in Tarski (1979). We 
will make use of this family when constructing some modified forms of path integrals. 

We will also encounter in the text path integrals over phase space. Here one 
integrates in effect over X o i X o ,  where the two spaces are related by the natural 
isomorphism +( 7 )  t+ p (  7) .  These integrals (assumed over 7 or 7j, and p, for definiteness) 
are characterised by the weight factor 

exdi(p, +)-i(2m)-'(p7 p)l. ( 1-61 

Otherwise one proceeds as before, with projections to  PXo 4- PX, (following the options 
mentioned above), and with convergence factors exp(-tb(+ -a, + - a) -$bo(p -  a,, 
p-a, ) ) ,  (see Tarski 1982b for further details). 

2. Quadratic integrands and examples of transformations 

One familiar formula for Gaussian functional integrals (positive-definite or Feynman 
type) is the following: 

Here T is a linear operator, and the integral is unambiguously defined if and only if 
T is of trace class. The above formula also has a counterpart for Gaussian integrands: 

(2.2) 9(() exp($iK((, 5)) exp(bc(t, Tt))=[det(l+ T)]-1'2. 

We assume here for convenience that (1 + T )  > 0. Again, the determinant and the 
integral are both unambiguously defined if and only if T is of trace class (cf Shale 1962). 

Trace-class operators and determinants are relevant when one considers a general 
transformation K :  X +  X in functional integrals. We assume that K is bijective, but 
not necessarily linear. The map t+ D,(K(),  where D, is the Giteaux derivative, 
defines a linear operator VK(. Then det(VK(), if it exists, is the Jacobian for the 
transformation K. 

For reference we recall the following familiar facts. First, if a linear operator has 
the form of an integral operator L with a symmetric kernel L(x, y),  

(Lf)(x) = J d"yUx, y)f(y) ,  (2.3) 

then we can call jd"yL(y, y) its 'formal trace'. If the operator is of trace class, then 
this formal trace agrees with the trace. 

Second, if K is nonlinear, and we are given e.g. an expression for ( K ( ) ( x ) ,  then 



1176 K S Narain and J Tarski 

Third, in certain cases the restriction to  trace-class operators can be slightly relaxed 
and Hilbert-Schmidt operators B can also be allowed. For example, a Gaussian 
measure transformed by the operator 1 + B (assumed non-singular) is equivalent to 
the original (Shale 1962),  cf propostion 1 below. However, Hilbert-Schmidt operators 
cannot be admitted e.g. in (2.2). 

W e  return to functional integrals. The  analogy of 9(5) t o  the Lebesgue measure 
suggests the following form for transformation of the integral: 

= 1 g(i) e x p ( h ( 6 ,  S))ldet(CKS)lexp[~K((Kl, K5) - (5 ,  i ) ) IF(Kl) .  (2.5) 

We  included the factor exp(liK((, 5)) and then its inverse, in order to put the last 
integral into the standard form. We  presuppose for these integrals the definition (1.2). 

W e  emphasise that the foregoing is a generic relation, one that remains to be 
investigated for different transformations K and functions F. It holds in particular for 
integrable functions F, if K is a translation within R. It also holds if K is an orthogonal 
transformation of X (i.e. a rotation), provided we set ldet TK{1= ldet K l =  1. 

One  could say that equation (2.5) provides a particularly convenient description 
of change of variables. For this reason we give two special cases in the following 
propositions. In the next section we will encounter a different kind of situation. 

If K is linear, then OK( = K. Let us write for now K = 1 + T, and let T' be the 
transpose of T. Then (2.5) reduces to 

(2.6) 

Proposition 1 .  Let T :  %+ 3Y be linear and of trace class, and such that 1 + T is invertible 
(i.e. -1 is not an eigenvalue of T ) .  Let p be a measure on % s u c h  that, for some 
integer n 2 0 ,  

(2 .7a )  

(where lpl is the absolute variation of p ) ,  and let F be given by 

F ( 0  = (SI ,  5 ) .  . . (Sn, 5) d p ( x )  exp(i(xy, 5)) (2.7b) 

where l, E 2, V,5. Then the integral on the RHS of (2.6) exists, and this equation is valid. 

A proof based on routine manipulations is given in appendix 1. We  remark that 
integrands such as F are further discussed in Berg and Tarski (1981).  
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We also give an example of a nonlinear transformation, for the case dim R= 1. 
Let F be a bounded and (Feynman) integrable function. For example, F could be the 
Fourier transform of a bounded measure: 

d /  vi( v )  < E. (2.8) I F ( u )  = dv( v )  exp(iuv), I 
Let f E Y be such that l f ’ l  S constant < 1, and consider 

Kv = v + f (  U ) .  (2.9) 

Proposition 2. Equation (2.5) is valid for the case dim X =  1, K as in (2.9), and F 
bounded and integrable. In this case (2.5) reduces to 

r 

Note that I f ’ l <  1 implies that K is bijective. 

Proof Let a E R ’, let Re b > 0, and consider the approximation 
X 

Zb3u(F) - ( - i ~ / 2 7 r ) ” ~  dv exp[-$b( U - e x p [ & i ~ v ~ ] F (  U). (2.11) 1.. 
We make the change of variable U +  Ku. We then obtain an integral which is the 
desired approximation to the RHS of (2. lo ) ,  except that the 0-dependent convergence 
factor now is 

exp[-ib(v- a)’] expI-tblf2(u)+2vf(f(v) -2af(v)]} (2.12) 

instead of exp[-ib( v -  a)’]. 
Let us replace b by 6, in the second exponent, and let us denote the resulting 

approximating integral by J ( b ,  b l ) .  Then J ( b ,  b )  has the same limit as Z”a(F),  and in 
order to justify (2.10) we need to show that J ( b ,  0) also yields I ( F )  in the limit; i.e., 
we need to  show that 

lim [ J (  b, b )  - J (  b, O)] = 0. (2.13) 

The difference J (  b, b )  - J (  b, 0) can be estimated as follows. The second exponent 
can be bounded by l+(blCl for some constant CI. The integral for J(b,O) with the 
integrand replaced by its absolute value is bounded by Ibl-’”C2, for some constant 

l J (b ,  b ) - J ( b , 0 ) ( ~ ( 1 + I b j C , - l ) j b ~ - ’ ” C 2 ,  (2.14) 

b-0 

C2. Thus 

and (2.13) follows. 

The following comment could be made here. By showing that the two convergence 
factors lead to the same result, we are able to refer to the original definition of the 
integral. We are then able to state a proposition about integrability in a neat way. 
But otherwise, we cannot give any compelling reason for preferring the convergence 
factor exp[-ib(v- a)’] to that in (2.12). 
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3. Path integrals in curvilinear coordinates 

We consider a Schrijdinger particle on R ”, with Cartesian coordinates 7’. We introduce 
curvilinear coordinates Q’ in the following way: 

77’=cp’ (Q)=  Q’+cp’o(Q), Q’ = (cp-wd, cp(0) = O .  (3.1) 

We assume that the correspondence v++Q is bijective and continuous. Other 
conditions will be specified later. Note that this correspondence resembles that of 
proposition 2. However, now the path components 7j’ are the main variables, and the 
effect of nonlinearity on the path integral is rather different. 

We should like to transform the path integral, so that it would express integration 
over paths Q( T). Since 7j’ = i)’d,cp’( Q), the integral should have the form 

ga,(0) expEtimSb(Q)IF(Q)8(Q(r)-d), (3.2) 
O ( O ) = O  

where we set 

sb (0) = 1‘ dT @i)kgir,(Q) and g j k ( Q )  =c (afl’>(akV‘). (3.3) 
I 0 

In the foregoing gg( Q) should include a contribution from the metric tensor, cf below, 
and for definiteness we included a second endpoint condition. 

In case of a particle on R ’, Sb (Q) becomes 
r t  

(3.4) 

The coordinate Q might then be described as non-uniform rather than curvilinear, 7 
being a uniform coordinate. A geodesic would in each case be an interval. However, 
if a geodesic is naturally parametrised by the arc length U, then ~ ( a )  is a linear function 
but Q(u) is not. 

A basic question now is whether the definition given in the introduction could 
apply. The answer appears to be negative, for the following reason. Let us consider 
a particle on R’. Then, following § 2 and especially equation (2.5), the gradient of 
&’(a) should be the identity plus a trace-class operator. But we have, in terms of 
cPo=‘P-Q, 

s[Q(~)cp’(Q(~)) l /  @(U> 

= 8 ( ~ -  U) + 8 ( ~ -  U)cpb( Q ( T ) )  i- Q(T)(P; (Q(T) ) [~Q(T) /~Q(u) ] .  (3.5) 
This kernel defines an operator 1 + TI + T2, corresponding to the three summands. 
The second has an infinite trace, coming from S ( O ) ,  and this singularity cannot be 
cancelled by T2, since the last derivative is 1 if T < U and 0 if T > U. (One can similarly 
verify that T,  + T2 is not Hilbert-Schmidt, cf 9 2). 

We proceed therefore to give an independent definition, or construction, of the 
integral in (3.2). We note that the transformation (3.1) defines in a natural way a 
transformation of the Hilbert space X0 (which is in general nonlinear). The notions 
of projections, translations, etc. therefore remain meaningful. However, in view of 
the form of SA, and of the need to modify 9, we expect neither rotational nor 
translational invariance in the original form. For this reason we ignore the more 
general scheme described in the introduction. Rather, we restrict our approximations 
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to those which are defined by subdivisions of [0, t ] ,  as in (1.3). For the convergence 
factors we take exp(-$bSl,), Re b > 0, with the shift vectors a omitted. 

Next, one knows that a polygonal approximation in the Q variables is in general 
inadequate for the kinetic part of the action, imSb (Edwards and Gulyaev 1964). We 
therefore resort to the following hybrid procedure. We approximate Sl, by employing 
geodescis parametrised by arc length. A contribution from one time subinterval then 
becomes 

Sl,(tj- t j - 1 ;  Q, Qj-1) = l l ~ - ' (  Q j )  - q-'( Qj-l)l12(tj- tj-1)-', (3.6) 

i.e. equal to the polygonal approximation in the 7-variables. 
For the proper integrand F, or for Fa, we use the polygonal approximation in the 

0's .  We will denote such an approximation of F by F(PQ) ,  as before, where the 
projection P corresponds to the chosen partition of [0, t ]  (cf 9 1). Now, we construct 
the following approximation, as modifications of (1.5): 

&(P, b;  F )  = { fi d"Qjg(Qj)"2[(b- im) /2 . rr ( t j - t j - l ) ]k"2)  
j =  1 

Xexp[-i(b-im) 1 sb(t,-tj-1; Qj, Q , - 1 ) ] F ( P Q ) a ( O k - d ) .  (3.7) 
i 

Here Q O = O ,  to= 0, tk = t, and g ( 0 )  =det g j k ,  g1 l2  being the Jacobian of the trans- 
formation 7 + Q. (Such factors occur also in path integrals over manifolds, cf Tarski 
(1982a).) We now define the integral in (3.2) by taking limits: max(tj-tj-l)LO, 
followed by b + O  non-tangentially, as in 9 1. 

Let us return to the approximation (3.7). If we express it in terms of the 7-variables, 
we obtain ( l S ) ,  where however F ( P 7 )  will be replaced by F(cpPcp-'q). We see that 
all we have done in effect is to introduce a 'distorted polygonal approximation'. 

We emphasise that such approximations provide the only way we know at present 
of incorporating transformations cp, and the variables Q, into rigorous path integrals. 
It is this circumstance, rather than specific applications, that motivated our search for 
some properties of these approximations. Hence the following proposition, which we 
precede by a technical lemma. 

Lemma 3. Let V be bounded and continuous potential (on R"), and let cp be bijective, 
of class % I ,  and such that g (  Q) # 0 everywhere. Let 

Then the values lIv(P, b; f)l (cf (3.7)) are bounded by a quantity which is independent 
of P (but may depend on b, etc). 

This lemma is proved in appendix 1. 

Proposition 4. Under the hypotheses of lemma 3, 

s-'/'(d) 1 9,(0) exp[fimSb(Q)lf(Q)s(Q(t)- d) = G ( t ;  c p - ' ( Q ) ,  01, (3.9) 
O(0) =o 

G being the Schrodinger Green's function (for the Cartesian coordinates 7). 
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Proof. We express the approximations (3.7) in terms of 7-variables, with f(cpPQ) = 
f(cpPp-' v). For b - im > 0, the integral reduces to the Wiener integral. The bounded 
convergence theorem, together with the continuity of cp, f ,  and V, imply that we obtain 
the Wiener integral of f ( 7 )  as max(tl-fj-,) L 0, i.e. P-. 1. Lemma 3 and Vitali's 
theorem then imply that the corresponding convergence extends to  the half-plane 
Re(b - im)  > 0. (For this method of proof cf Nelson (1966) and Tarski (1979).) We 
obtain in this way the (usual) analytically continued Green's function, and the limit 
as b+O is justified as in Nelson (1966) and Tarski (1979). 

We conclude with three comments. Firstly we observe that the foregoing approxi- 
mations leave no free choice (or,  no ambiguity) with regard to the ordering of factors 
in S; .  

Secondly the integral (3.2) is often considered as a density in its dependence on 
the initial point Qo (here Qo = 0) and on 0. For this purpose, appropriate powers of 
g(Qo) and g ( i ) )  could be adjoined. Our construction is in this respect somewhat 
asymmetrical, as equation (3.9) shows. 

Thirdly the approach just sketched can be easily adapted to phase-space integrals. 
We extend the map 7 = cp( Q) to ( p ,  7) = @( r, Q), where 7~ is the momentum canonical 
to Q. For brevity in writing we now assume a particle on R' .  Then p = rep'( Q)-', so 
that: 

( p ,  T ) = @ ( T  Q)=(rcp'(Q)-',cp(Q)). (3.10) 

Now given f(p, T), we may set up the approximations by integrating f ( @ P W ' ( p ,  77)) 
over PZo4 PRO with convergence factors, cf introduction and Tarski (1982b). Here 
P ( T ,  Q) has the same meaning as P ( p ,  71, i.e. is defined by averaging 7~ as well as 0 
in a subinterval. If the limits max( tl - L 0 and then b, bo -+ 0 exist, with suitable 
conditions, then these limits could define the phase-space path integral of f. 

This procedure differs from the 'midpoint convention', employed in Arthurs ( 1969) 
and elsewhere. It would be of interest to relate the two. 
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Appendix 1. Two proofs 

Proof of Proposition 1. First we show that F ( (  1 + T ) [ )  is the Fourier transform of a 
transformed measure p ' ,  under the hypothesis that F ( [ )  is the Fourier transform of 
w. We use the criterion of Gross (1963). Clearly F ( ( 1 +  T ) [ )  is positive definite. 
Next, F ( [ )  is necessarily of the form F o ( B [ )  with F(, continuous and B Hilbert-Schmidt. 
But then F ( (  1 + T ) c )  = F,,(B(l+ T ) [ ) ,  and B ( 1 +  T )  is likewise Hilbert-Schmidt (Gel- 
fand and Vilenkin 1964).  It follows that F(( l+ T I [ )  is the Fourier transform of a 
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bounded measure p ' .  This measure clearly satisfies, for any integrable f, 

1 d ~ ' ( x ) f ( x )  = d p ( x ) f ( ( l +  T')x).  ( A l . l )  

Next, the linear factors on the RHS become (l;, 5) where [l = (1  + T')l,. We recall, 
moreover, that such factors result from applying i-'D,; inside the /*'-integral in ( A l . l ) ,  
if f (x )  = exp(i(x, 5)). (Here D, is the Giteaux derivative with respect to x.) The 
integral on the RHS of (2.6), i.e. without the determinant, now becomes 

i-" 5 2(5) exp[$K(t, (1 + T')(1+ TI01  1 dp'(x)D,;  . . . exp(i(x, 5)). 

gence factor (the indicated interchange of operations being clearly allowed): 

(A1.2) 

We consider now an approximation, determined by a projection P and a conver- 

i-" 1 dp'(X)D,; .  . . D S , [ ( b - i ~ ) / 2 ~ ] " *  dku exp(-$b(u-Pa, U-Pa)) 5 
x e x p ( $ ~ ( u ,  U ) )  exp(u,[iK(T+T'+T'T)rPX]u)exp(i(PX, U ) )  

= i -"  exp(-ib(Pa, Pa)){det[l - i K ( b - i K ) - ' P ( T +  T'+ T'T)P]}"' 

X ]  dp'(X)D,; .  . . D,:exp($(bPa+iPx, 

X {[b - i K  - i K (  T +  T' + T'T)] rPX}-'(  bPa + iPx))). (Al .3)  

(In the last expression the scalar product is bilinear and symmetric, but not Hermitian.) 
We note that this evaluation is as in Tarski (1979), proof of proposition 7,  but with 
L replaced by T + T ' +  T'T, and bPa by bPa +iPx. 

We already see from (A1.3) what the two limits P+ 1 (rather, j + s  where P, is 
a sequence which + 1) and b + 0 will yield. To justify these limits, we refer to the 
analogous arguments in the iterature, and will not reproduce the details here. In 
particular: for P+ 1, cf Tarski (1979). For b + 0, cf Tarski (1979), proof of proposition 
5 ,  or Berg and Tarski (1981). We remark that the justification of this limit in the 
cited works, i.e. for T = 0, depends on certain inequalities. These inequalities extend 
to the present case, since both 1 + T and (1 + T)-' are bounded. We observe that 
integrability on RHS of (2.6) now follows. 

The two limits in question reduce (A1.2) to 

i-"[det(l+ T ' ) ( l +  T)] - ' '2  dp'(x)D,;  . . . D,: exp[i(iK)-l(x, (1 + T)- ' ( l+  T')-'x)]. 

(A1.4) 

The determinant factor equals /det(l  + T ) / - ' .  As to the action of the operators D,; 
note that DcL yields 

( iK)- ' ( ( l+ T')(,,  (1 + T ) - ' ( l +  T')- 'x) = (iK)-'(Ln, (1  + T')-'x). (A1.5) 

In accordance with (Al.11, we replace p' by p and x by (1 + T')x. Then in particular 
T disappears from (A1.5), and so the action of D,; becomes equivalent to that of D,; 
on exp[$(iK)-'(x, x)]. The analogous conclusion applies to the other D,;. Thus (A1.4) 

I 
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becomes 

Idet(l+ T)I-'i-" dp(,y)DC, . . . DCn expE$(i~)-'(,y,,y)]. (A1.6) 

The factor I . .  .I-' compensates the determinant that was dropped in forming (A1.2), 
and the part i-" . . . equals the LHS. Thus (2.6) is established. 

J 
Proof of Lemma 3. We reintroduce 

(A1.7) 

An approximation l+,(P, b; f) will then be determined by the function f((pPq-'7j(7)), 
cf the discussion preceding the statement of the lemma. If ti-' T S  ti, this function is 
given by 

We consider now, with y = 4p( d), 

(A1.9) 

Since V is bounded, say I V l s C ,  we may expand the exponential of ldTV and 
interchange integrations. Consider the term 

N 

IN:= fl d n q j . .  . (-i d7  V) 6 =(-i)" dT1..  . dTN n d n v j . .  

x v(. . . 71) . . . v ( .  . . T " ) 6 (  v k  - y ) .  (A1.lO) 

In view of (A1.8), the N values of the V(. . . T), together with 6(vk  - y ) ,  depend on 
at  most 2 N +  1 of the vi's. We utilise, therefore, a device which was employed in the 
proof of proposition 24 in Tarski (1979) (and is due originally to Friedrichs and 
Shapiro). Namely, we express 1, as a n ( 2 N +  1)-dimensional integral over suitable 
linear combinations of the vj's, the remaining integrations reducing to unity. The 
underlying idea is, of course, that of splitting PX,, into two perpendicular subspaces, 
the V's and 6 being non-trivial on one of these. 

Suppose for the moment that V = O  (f = 1). Then only the subspace with 7j =- 
constant is relevant, and integrating over this subspace yields the analytically continued 
free-particle Green's function: 

Z+,(P, b;  1) = Gf!!,,,,(t; y,  0 )  =[(b-im)/2dIn/ '  expC--(b--im)(ly(1'/2t], (Al .  11 a )  

/Iv(P, b; 1)1=lG6'?i,,,I=(lb-im(/Re b)"/'GkO,',(t; y , O ) .  (Al .  11 b) 

We can see from these relations that, whenever the absolute value of an I-dimensional 
integral (of the kind as in (A1.9)) is to be taken, then the following is to be done: 
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first, the coefficient b-im in the exponent should be replaced by Re  b. Then, since 
the normalising factor corresponding to this Re b requires (Re b)"* rather than 
(b-im)'", one should replace (6-im)'" by (Ib-imllRe b)'". 

Now, in view of our previous remark, for IN we need to estimate a (2N + 1)n- 
dimensional integral, or a 2Nn-dimensional integral in addition to that for (Al.11). 
Therefore 

IIN(GtNCN(lb-iml/Re b)N"IGf!!i,(t; y, O)l,  (A1.12) 

from which 

14A~9  b ; f ) I s  g(Y)"2 c l h "  
s g ( y ) exp[tC( I b - im ( /Re  b)"]lGb0ji,,, ( r; y, 0)l. (Al .  13) 

This is the desired bound. 

Appeindix 2. Vector potentials 

The path-integral representations of Schrodinger Green functions in the presence of 
external vector potentials A are familiar (e.g. Feynman and Hibbs 1965), and take 
the form 

G(f ;  Y, 0) = I 9 ( ~ )  expCh(G, +)+ie(+, A ( T ) ) ] ~ ( T ( ~ ) - Y )  (A2.la) 
1(0)=0 

= I w T ) w ~ )  exp[i(p, ~ ) - U ~ ) F ~ ( ~ - A ( T ) ,  ~ - A ( T ) ) I  
s(O)=O 

XW77(f)-Y), (A2.1 b) 

where the scalar products have the obvious interpretation, 

(A2.2) 

Note that we can reduce (A2.lb) to (A2.la) by making the (heuristic) change of 
variables p + p +  eA and then doing the &integral. 

The foregoing expressions were considered on a number of occasions, primarily as 
examples illustrating the problem of ordering of factors, or the connection with 
stochastic integrals (cf e.g. McLaughlin and Schulman 1971). In this section we consider 
the integrals in (A2.1) from the point of view of the definition (1.2) and its phasespace 
analogue. We will see that for a pure gauge field, the ordering problem is automatically 
resolved by the above formulation of path integrals (in contrast to the treatment of 
McLaughlin and Schulman (1971), but we will also give an example of an integral 
which does not converge in a basis-independent way. 

Let us consider a potential A = VA, a pure gauge field. Let P project onto functions 
where 7 j ( ~ )  =constant, and let P' 3 P (i.e. we take the family 2 ( P )  of sequences of 
projections). Then in the approximation defined by P', 

1; dT(dP'T/dT)VA(P'q)= d ~ ( d / d ~ ) A ( ~ ' ~ ( ~ ) ) = A ( P ' ~ ( t ) ) - A ( P ' ~ ( O ) ) .  (A2.3) 

However, P'v(0)  =0, and by using P T ( t )  = v(f)  we easily conclude P ' T ( t )  = v ( t ) .  The 
presence of 6( T ( f )  - y) in the integrand now yields A (y )  - A (0). After removing the 

I 
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factor exp(ie[A( y)  - A(0)]), we obtain the integral for the free-particle Green function, 
for any such P'.  

We remark that the potential A = OA can also be easily handled in case of the 
phase-space integral (A2. lb) .  Indeed, if P' now defines an approximation to (A2. lb) ,  
and P' 2 P, then we can make the change of variables P ' p - ,  P ' p +  A ( P ' v ) ,  integrate 
over P'p ,  and proceed as before. 

It is instructive to verify (A2.3) in a different way for the case of a particle on RI 
with A ( v )  = 77. Then 

( i ,  77) =: ( e ,  B1 v) = d 7  d r '  i (  r ) i (  ~ ' ) e , (  T'), (A2.4a) I,: 
i.e., BI is determined by the kernel b T ( T ' ) ,  which is given by 

e,(+) = 1 for T'< T, 

= 0  for T ' > T  (A2.4b) 

(so that e,( 7') = min(7, 7 ' ) ) .  Only the symmetric part of B1 contributes to the scalar 
product, so that we may replace Bl by $ ( B ,  + B : ) ,  with the kernel 

(A2.5) bl( 7, T') = + [ e , (  T') + er,( T)] =+ (AE)  

( A E :  'almost everywhere'). Therefore (in agreement with (A2.3)),  

(A2.6) 

We next present the example of a particle on R2,  with A( 7) = Lv,  L being a skew 
matrix: 

( i ,  A(v))=: ( i ,  B2i)  

We symmetrise the operator as in (A2.5), but now this requires a simultaneous 
interchanging TC) 7' and transposing the matrix. The  kernel matrix becomes, in view 
of (A2.5), 

The eigenvectors (or  some of them) can easily be found. Let n be an integer, and 

(A2.9a) c, ( 7) = ( i x, f i  ?)I( T) = [sin( 2 n + 1 ) m-/ t ,  cos( 2 n + 1) TT/ t ] ' .  

Then 

I,' d7  b2( 7, T') U,( T') = ( t /  T ) (  2n + l ) - '  U,( 7) .  (A2.9b) 

Since Zl2n + 1 I - l  diverges, and the trace class is determined by absolute convergence, 
we conclude that B2 is not of trace class. Therefore (A2 . la )  does not converge, and 
this conclusion extends easily to  (A2.1 b) .  
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More generally, if A(  7)  = L7, where L is a constant matrix, then the symmetric 
part of L is a pure gauge field, while the skew part can be analysed by exploiting the 
above example. We summarise this below. 

Propbsition 5. If A = V A  (and A is continuous), then the path integrals in ( A 2 . l ~  b )  
exist, and are equal to the free-particle Green function times exdie[A( y )  - A  (O)]}. 
(Convergence then is with reference to the family 9 ( P ) ,  where P projects onto constant 
+.) If A ( 7 )  = Lv where L is a constant matrix having a non-zero skew part, then the 
integrals in (A2. la ,  b )  do not converge in a basis-independent way. 

We conclude with the following comment. The case of a constant (non-zero) 
magnetic field corresponds to A( 7)  = Lv with L having a skew part. The path integrals 
could then be defined by specifying an additional limiting procedure, but we forego 
further discussion here. We may note, however, that in case of an analogous integrand 
in a Wiener integral, the theory of stochastic integrals would be applicable (loc. cif. 
and references given therein). An attempt to extend this theory to Feynman integrals 
is made in (Garczynski 1980). 
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